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This paper describes recent analytical and experimental efforts to determine the effects 
of fibre aspect ratio, fibre spacing, and the viscoelastic properties of constituent materials 
on the damping and stiffness of aligned discontinuous fibre-reinforced polymer matrix 
composites. This includes the analysis of trade-offs between damping and stiffness as 
the above parameters are varied. Two different analytical models show that there is an 
optimum fibre aspect ratio for maximum damping, and that the predicted optimum 
aspect ratios lie in the range of actual aspect ratios for whiskers and microfibres when the 
fibre damping is small. When the fibre damping is great enough, however, the optimum 
fibre aspect ratio corresponds to continuous fibre reinforcement. Experimental data for 
E-glass/epoxy specimens are presented for comparison with predictions. 
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area Of composite, Wf 
fibre, and matrix, respectively. 
Fibre diameter. W m 
Complex extensional modulus of 
composite, fibre, and matrix, respec- Wvm 
tively. 
Extensional storage modulus of cam- Wem 

posite, fibre, and matrix, respectively. 
Extensional loss modulus of compo- wrm 
site, fibre, and matrix, respectively. 
Complex shear modulus of matrix, wf 
Shear storage modulus of matrix. 
- -  1 1 / 2 .  x 

Defined in Equation Ag. 
Defined in Equation A5. c~ 
Fibre length. /3 
Radial distance from centre of fibre. 13" 
Fibre radius, e 
Radius of representative volume ele- ~Te,'r/f, 77m 
ment, or one-half of centre-to-centre 
fibre spacing, r/Gm 
Volume fraction of fibre and matrix, 0 
respectively. 
Total strain energy stored in a unit Je,Oe,Om 

volume of composite. 
Strain energy stored in volume v~ of 
fibre. 
Strain energy stored in a volume v m 
of matrix. 
Shear strain energy stored in a volume 
Vm of matrix. 
Extensional strain energy stored in a 
volume Vm of matrix. 
Shear strain energy stored in the 
matrix in r0 ~< r ~< R. 
Extensional strain energy stored in a 
single fibre. 
Distance along fibre from end of 
fibre. 
Defined in Equation 12. 
Defined in Equation 2. 
Defined in Equation A2. 
Extensional (longitudinal) strain. 
Extensional loss factor of composite, 
fibre, and matrix, respectively. 
Shear loss factor of matrix. 
Polar angle measured in a plane 
perpendicular to fibre axis. 
Average longitudinal stress in cam- 
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Of 

posite,fibre, andmatrix, respectively, r 
Longitudinal stress in fibre. 

Shear stress in matrix. 
Defined in Equation 27. 

1. Introduction 
It is a well-known fact that light-weight fibre- 
reinforced plastic materials have excellent strength 
and stiffness, and much effort has been devoted 
to the improvement and optimization of these 
properties in various structures. Many applications 
of these materials require good vibration damping 
properties as well (e.g. aerospace structures, heli- 
copter rotor blades, circuit boards, high-speed 
printer components). Due in part to extensive 
accumulated experience with conventional struc- 
tural metals having poor internal damping charac- 
teristics, the potential for significant improvement 
and optimization of damping in advanced fibre- 
reinforced plastics has not been fully realized, 
however. At the same time, discontinuous fibre 
reinforcement has not been emphasized in advanced 
composite materials research because of the higher 
strengths and stiffnesses currently available in 
continuous fibre composites. However, the results 
presented in this paper indicate that the vibration 
damping properties of polymer matrix, fibre- 
reinforced composite materials may be significantly 
improved and possibly optimized by using dis- 
continuous fibres rather than continuous fibres. 
More specifically, this paper describes recent 
efforts to determine the effects of fibre aspect 
ratio, fibre spacing, and the viscoelastic properties 
of matrix and fibre materials on the damping and 
stiffness of aligned discontinuous fibre-reinforced 
polymer matrix composite materials. The analysis 
of trade-offs between damping and stiffness is 
also included. 

The damping properties of continuous fibre 
composites have been studied by a number of 
investigators, as shown in several previous review 
papers [1-4] .  There are relatively few reports of 
such work on discontinuous fibre composites, 
however. Studies reported by McLean and Read 
[5] and Gibson and Yau [6] indicate that the 
damping in a given composite can be improved 
by using discontinuous fibres rather than con- 
tinuous fibres. One possible explanation for this 
phenomenon is the presence of shear stress con- 
centrations at the numerous fibre ends in a dis- 
continuous fibre composite and the resulting shear 
stress transfer to the viscoelastic matrix. It is 
known that shear deformation causes most of the 
vibrational energy dissipation in viscoelastic 

materials such as polymers [7]. A previous analysis 
of discontinuous constrained viscoelastic layer 
damping by Plunkett and Lee [7] appears to offer 
an analogous solution for the case of discontinuous 
aligned fibre reinforcement. This analogy, which 
was also observed by Bert [4], is based on the 
similarities of the interfacial shear stress distri- 
butions along discontinuous constraining layers 
and along discontinuous reinforcing fibres. The 
approximate stress distribution along a discon- 
tinuous fibre embedded in a matrix material was 
first reported by Cox [8]. The analytical and 
experimental work by Plunkett and Lee [7] 
showed that there is an optimum constraining 
layer aspect ratio for maximum damping in the 
constrained viscoelastic layer. Thus, the existence 
of such an optimum aspect ratio for the short-fibre 
composite seems apparent. The optimum aspect 
ratio for damping is not necessarily the best for 
stiffness, however. So it is important to study the 
influence of the various governing parameters on 
both damping and stiffness. 

In the present work, two approaches to the 
solution for the complex modulus of a discontin- 
uous aligned fibre composite were based on the 
Cox stress distribution. In the energy approach, 
the energy stored in the fibre and matrix and the 
energy dissipated due to interfacial shear stresses 
were calculated, and the energy balance on the 
representative volume element provided the values 
of storage as well as loss moduli. The other 
approach involved the derivation of the expression 
for the elastic stiffness of the discontinuous com- 
posite based upon the average fibre stress and the 
force balance between fibre and matrix. The 
elastic-viscoelastic correspondence principle was 
then used to obtain the expression for the com- 
plex modulus. Both approaches verified the 
existence of a theoretically optimum fibre aspect 
ratio, as seen later. 

Preliminary experimental data on damping and 
stiffness of discontinuous aligned composites was 
obtained by using a resonant dwell, forced flexural 
vibration technique to test E-glass/epoxy speci- 
mens having several fibre aspect ratios. Analytical 
and experimental results are compared and dis- 
cussed and conclusions regarding future directions 
of this research are presented. 

3500 



2. Analysis 
There appear to be two primary sources o f  en- 
hanced damping or energy dissipation in fibre- 
reinforced polymeric matrix materials; (1) the 
viscoelastic behaviour of the bulk matrix and the 
interface, and (2) the friction at the interface 
caused by relative motion between matrix and 
fibre. Both of these effects may be significant 
in discontinuous fibre composites in which high 
shear stresses are developed at the fibre-matrix 
interface. When a short-fibre composite is sub- 
jected to a cyclic strain, the matrix at the fibre 
interface near the ends of the fibre undergoes a 
high cyclic shear strain, thus producing significant 
viscoelastic energy loss. It should be noted that 
most of the energy dissipation in polymers is due 
to shear strains, and very little is caused by dilata- 
tional strains. Thus, even the unreinforced resin 
would dissipate energy under most loading situ- 
ations. Only in pure hydrostatic loading would 
there be no energy dissipation. 

The shear stress concentration may also induce 
plastic effects as well as partial debonding at the 
f ibre-matrix interface that would result in slip 
between fibre and matrix and corresponding 
frictional losses. Such a fibre-matrix debonding 
would, however, effect adversely the strength 
and stiffness of the composite. Therefore, it is 
desirable to have a strong interfacial bond such 
that slip at the interface can be avoided. Thus, the 
most viable mechanism of enhanced dissipation 
appears to be the shear deformation in the matrix 
caused by shear stress concentration near the 
fibre ends. 

Looking towards the stress transfer mechanism 
between fibre and the matrix, various theories 
tend to agree that there are several parameters 
(e.g. fibre aspect ratio (length/diameter), fibre 
volume fraction (v0, fibre/matrix modulus ratio 
(E~/E m) etc.) that influence the shear stress distri- 
bution at the interface. The matrix surrounding 
a short fibre in a composite experiences a three- 
dimensional state of stress even though the com- 
posite may only be subjected to a uniaxiat state of 
stress. The situation becomes further complicated 
when the interaction with neighbouring fibres is 
also taken into account. We therefore chose to use 
a "mechanics of materials" approach that could 
reasonably predict the stress transfer at the inter- 
face. The shear lag analysis due to Cox [8] 
appeared to be reasonable for this purpose. This 
theory is based upon the assumptions that there 

is a perfect bond between the fibre and the matrix, 
that both matrix and fibre are linearly elastic, and 
that the representative volume element is sub- 
jected to a uniform extensional strain along the 
fibre direction. According to this theory, the shear 
stress in the matrix at a distance x along the fibre 
and a radius r (Fig. 1) is given by the equation: 

2 r roEfel3 sinh [/3(l/2 - -x)]  
r = 2r cosh ~ / /2)  ' (1) 

where 

G "  2 
/3 2 = (2) 

E~ 4 in (R/ro)" 

Other approximate analyses by Dow [9], Rosen 
[10], and Kelly and Tyson [11] appear to give 
very similar results to that of Cox and differ only 
in the values of/3. In all the analyses/3 is propor- 
tional to (E'm/E~) 1/2 and differences occur only 
in the term involving the volume fraction of fibres; 
(ln R/ro in Equation 2). In spite of the short- 
comings, Equation 1 is a good approximation to 
that obtained by a much more sophisticated 
analysis by Smith and Spencer [12]. It is realized, 
however, that all of these analyses are based upon 
a single fibre model and ignore the effect of 
neighbouring fibres, of fibre end conditions and 
of abutting fibre ends. Some of the geometrical 
parameters, however, are shown to have opposing 
effects on the shear stress concentration. 

T 
l 

Fibre ~ 

X 

\ 
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Figure 1 Representative volume element. 
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On one hand, the photoelastic study of a single 
fibre embedded in a matrix by Tyson and Davies 
[13] shows that the shear stress near the fibre 
end is considerably larger than that predicted by 
Equation 1. On the other hand, the experimental 
and analytical studies by Carrara and McGarry 
[14], MacLaughlin [15], Iremonger and Wood 
[16], and Barker and MacLaughlin [17] showed 
that by decreasing the centre-to-centre fibre 
spacing (increasing vf) the interracial shear stress 
is reduced. It was also found that by decreasing 
the spacing between abutting fibre ends, the inter- 
facial shear stress along the fibre was reduced. 
There may also be residual shear stresses at the 
fibre discontinuities, however, their nature and 
effects are not well known. Thus, it is well estab- 
fished that the stresses in a discontinuous com- 
posite are highly complex and it does not seem 
possible to take into account all the parameters 
that influence the stress in a closed-form solution. 

In spite of such complexities, Cox's model 
appears to predict reasonably well the interfacial 
shear stress distribution. McLean and Read [5] 
used this model to estimate damping in rubber- 
like material unidirectionally reinforced with 
discontinuous fibres. As shown later, however, 
their expressions are not complete because damp- 
ing for the unreinforced composite (i.e., vf = 0) 
and for continuous reinforcement (i.e. large fibre 
aspect ratios) cannot be deduced from them. 

Two approaches to the solution for complex 
modulus that can be adopted from Cox's stress 
distribution are discussed in the paragraphs to 
follow. 

2.1. Energy approach 
In this approach, the energy stored in the fibre 
and matrix and the energy dissipated due to 
interfacial shear stresses are used to find the 
values of storage as well as loss moduli. The 
analysis was carried out under the following 
assumptions: (a) the fibre is linearly elastic; (b) 
the matrix is a linearly viscoelastic; (c) there is a 
perfect bond between the fibre and the matrix 
and the interface has the same viscoelastic proper- 
ties as that of the bulk matrix. 

The above assumptions implicitly state that the 
strain energy is stored in both the constituent 
materials but that dissipation of energy takes place 
only in the matrix. Furthermore, it should be 
noted that the matrix between fibres undergoes 
shear deformation due to the presence of short 

fibres in addition to the deformation equivalent 
to the applied composite strain. 

If the longitudinal strain in the composite, the 
fibre and the matrix can be assumed to be e, the 
shear strain energy stored in a cylinder of matrix 
of radius R surrounding each fibre is given by: 

fi~ (t/2~ 2" r 2 7 r dr dx dO (3) 
W r m  : o JO JO G m 

where the shear stress r is given by Equation 1. 
The total shear strain energy, WTm, stored in the 
volume, Vm, of matrix in a unit volume of com- 
posite is 

Wrm Vrn 
W'r~ - 7r(R 2 - r~)l (4a) 

or  

_ d v~Ei {tanh ~l/2 1 ) 
Wnan 4 [ ( ~ - -  11 \ ~l/2 cosh2/3//2 " 

(4b) 

The additional strain energy in the volume Vm of 
matrix due to composite extensional strain, e, is 

Wern  1_ 2 l J  o, = 2 e ~mt~rn. (5)  

This part of stored energy in the matrix was not 
considered by McLean and Read [5]. The strain 
energy in the fibres can also be calculated using 
longitudinal fibre stress due to Cox [8] as: 

, { cosh[~(I/2--x)]} 
of = eel 1 -- cosh (3l/2 . (6) 

The strain energy stored in a single fibre is 

l]2 2 2 f f i r  o of  
wf = - - 5 - -  dx. (7) 

Jo Ef 

Therefore, the strain energy, Wf, in volume, vf, of 
fibres contained in a unit volume of composite 
can be calculated from 

vfwf 
Wf -- nrgl" (8) 

The storage modulus, E'e, of the composite can be 
obtained as 

2Wc Z(Wm + We) (9) 
E' e -- e2 -- e2 , 

where 

W m =  W~n + WEre. (10) 

Combining Equations 4b, 5, 8, 9 and 10, it is seen 
that 
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8 -  E~ 8= ~t[(R~/~)- 11 

x [a sinh(fll) + fill 
i-~707cosh~i J (11) 

where 
1 -- vf[(3R2/r~) -- 21 

o~ = v f (R2/rg) -  1 (12) 

As we assumed that the fibres do not contribute 
significantly to the dissipation of energy, the com- 
posite loss modulus, E", can be given as 

E~ r/m Wm 
E, c r/c We 

or (13) 
2 E"  W m 

E ~ -  eme: 

Substituting Equations 4b, 5 and 10 into Equation 
13, we get 

" f u; 1 
E~ Vm ~ 2[(RZ/r~) 1] E~ E m - -  

• ~ ~7~ cosh~el/2 + 1 
(14) 

For practical calculations the ratio R/r 0 in Equa- 
tions 11, 12 and 14 may be expressed in terms of 
the fibre volume fraction as shown in the Appen- 
dix. 

2.2. Force-balance approach 
In this approach, the expression for the elastic 
stiffness of the discontinuous composite is derived 
from the average fibre stress basedupon Cox's fibre- 
stress distribution. Then the elastic-viscoelastic 
correspondence principle [18] is used to obtain 
the expression for the complex modulus. This 
involves the replacement of the elastic moduli of 
composite, fibre and matrix in all expressions with 
the corresponding viscoelastic complex moduli 
for sinusoidal vibration. The complex equation 
for the composite modulus then becomes two 
real equations for storage and loss moduli. 

All the earlier assumptions stand except that 
the fibre can now contribute to energy dissipation 
and therefore the loss factor, r/f, may be nonzero. 

Based on the fibre-stress distribution (Equation 
6) the average fibre stress can be written as 

1/2aol file {1 tanh (/51/2)]~_~ J 6t = a fdx  = eU'f , .  (15) 

For static equilibrium, the total longitudinal force 
applied to the composite must be 

P = 6cAe = (~fAf + ~ r n A m ,  (16) 

therefore 

a c = E'ee = 6fv, + (~mVm . (17) 

Since the composite, the fibre, and the matrix all 
have the same extensional strain, e, Equation 17 
reduces to 

E" = E} (1 tanh/3//2_] vf+E,mvm" (18) 
ill~2 ] 

Then according to elastic-viscoelastic correspon- 
dence principle, Equation 18 can be written as 

or 

tanh fl*l/21 
82 = E? 1 ~;/~ ) vf + U'mYra, 

(19) 

, ( tanh/3"//2.] 
8" + iX 2 = (Ef + iE'f')v t 1 ~*1/2 ] 

+ (Ek + ;~')Vm. (20) 

The above equation can be simplified to obtain 
storage and loss moduli of the discontinuous com- 
posite by separating the real and imaginary parts 
and by neglecting higher order terms in the loss 
factors. The results are (see Appendix). 

E' c = E'fvf (1 tanhfll/21 E'f'vt 
 57Y ] - - 5 -  ( r/ Gm -- r/f ) 

/tanh~]2~I/2 cosh~//21 ) • \ +8"Vm, (21) 

,, ( tanh ill~21 E'fvt~ 
E" = Etvf  1 -fl/-2 -]-t----2 -t'r/Gm --r/f) 

[ tanh fill2 1 ) 
x 1 ~ c~ + 8;nVm" (22) 

A number of special cases can be derived from 
these general equations. For continuous rein- 
forcement, the fibre aspect ratio, l/d, is very large, 
and the storage and loss moduli take the familiar 
forms 

t t t 

E e = Efvf  + EmVm, (23) 
and 

E" = E'f'vf + 8 " v  m . (24) 

If we assume that r/f = 0, which means that the 
fibres are non-dissipative, then Equations 21 and 
22 for a discontinuous composite will reduce to: 
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and 

E__q_e = Ef v~ 1 tanh/31/2 +vm,  (25) 
eL 

_ ~ v  r/C,m (tan h ~ / 2  1 ) 
E m - - ~ \  /3l/2 cosh2/3//2 + V m  " 

(26) 

Equation 26 is similar to Equation 14, which was 
derived using an energy approach. 

From the expressions for the loss modulus and 
the equations in the Appendix, it becomes appar- 
ent that 

< 

= ~ (E}/E' m, re, I/d, r/e, r/am, packing geometry). 

(27) 

The influence of these independent parameters on 
the loss modulus can then be investigated. The 
fibre aspect ratio, I/d, turns out to have the most 
interesting effect. The optimum value of the loss 
modulus from Equation 22 can be found from the 
condition 

~E" 
- o ,  ( 2 8 )  aq/a) 

which leads to the equation 

2 cosh 2 (/3I/2) 1 r/Gm - -  r / e  

[32l 2 /31" tanh (~//2) r/am -- 3r/e " 

(29) 

It is very interesting to note that Equation 29 
will have different solutions depending upon the 
relative values of the loss factors r/am and r/e. It is 
instructive to first discuss some special cases of 
this equation. 

If we assume that r/f = 0, then Equation 29 can 
be simplified to 

[31 sinh 3l 1 
tanh - (30) 

2 32l 2 /3l 

This equation can also be derived from Equa- 
tions 14 or 26 by using the condition in Equation 
28. This equation has the unique solution 31 = 
3.28. That is, when the fibres contribute no 
damping, maximum damping in the composite 
occurs for 

(~-) = 3.28K, opt (31) 

where K is a function ofE~, E ' ,  v~ and fibre pack- 
ing geometry (see Appendix). It is interesting to 
note that this is the same aspect ratio as that 
reported by Plunkett and Lee [7] for constrained 
layer damping. Although the two approaches 
predict the same optimum l/d, the predicted loss 
moduli may differ from each other. The difference 
is due to the fact that the energy approach takes 
into account the actual (Cox) shear stress distri- 
bution, while the force-balance approach only uses 
the average stresses. 

The condition r/f/> r/Gin/3 in Equation 29 leads 
to maximum damping for /3l = 0% which means 
that large fibre aspect ratio (i.e. continuous fibre 
reinforcement) will provide maximum damping 
when the fibre damping is great enough. Thus, 
when r/~<r/am/3, (lid)opt =3.28K, and when 
r/f ~ r / G i n / 3  ' (lid)opt = oo. Graphical results from 
both analytical approaches will be presented and 
discussed later in this paper, along with experi- 
mental results. 

3. Experiments 
Preliminary experimental data on damping and 
stiffness of discontinuous-aligned fibre composites 
was obtained by using a resonant dwell, forced 
flexural vibration technique [19] to test E-glass/ 
epoxy specimens having four different fibre 
aspect ratios. The experimental technique is des- 
cribed by Gibson etal. [19] except for one detail. 
Since the materials tested in [t9] had relatively 
high matrix volume fractions, the damping was 
much higher than the damping in the materials 
being discussed here. Thus, the parasitic losses in 
the apparatus were more likely to cause errors in 
the current measurements. As a result, it was nec- 
essary to use epoxy shoulders on the specimens, 
as described by Gibson and Phinkett [20]. The 
purpose of these shoulders was to shift the clamp- 
ing surface away from the region of high strain 
on the surface of the specimen, thus reducing 
parasitic frictional losses in this area to an accept- 
able level. 

Specimens were fabricated by cutting 3M 
Scotchply 1003 pre-preg tape into strips of length 
l and placing these strips end-to-end in a staggered 
15 ply lay-up sequence before final autoclave 
curing (Fig, 2). Four types of specimens, each 
with different fibre length, were fabricated. Fibre 
lengths were 6.35 mm (0.25 in.), 12.7 mm (0.5 in.), 
25.4 mm (1.0 in.), and 254 mm (10 in.), and three 
specimens of each fibre length were tested to get 
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Figure 2 Specimen configuration. 

average values of damping and stiffness. Fibre 
volume fractions, as determined from resin burn- 
out tests, were typically near vf = 0.5. Test tem- 
peratures were 24 -+ 1 ~ C, relative humidity was 
48 -+ 2%, and test frequencies ranged from 140 to 
162 Hz. These frequencies corresponded to the 
fundamental flexural modes of each specimen. 
Testing was done in air at sufficiently low ampli- 
tudes so that air damping was not significant. 

Each experiment yielded values of E'  c and r~c 
Pt 

[19, 20], then E~ was calculated from E e = r~eE'c. 
Since the properties presumably did not vary 
through the thickness of the specimen, the mea- 
sured flexural modulus was assumed to be the 
same as the extensional modulus. This would not 
be true if the ply properties varied through the 

1 0 0  

thickness, or if off-axis shear coupling effects 
came into play. Values of Era, ~m, E~  and E) 
were taken from Gibson and Plunkett [20], since 
the same materials were used in these earlier 
experiments. The matrix shear loss factor, r~m,  
was found from ~Tm, the static properties of the 
matrix, and the viscoelastic forms of the relation- 
ships between isotropic elastic constants, under 
the assumption that the matrix is viscoelastic in 
shear but elastic in dilatation [20]. Data on the 
fibre loss factor, r~f, was not available, but esti- 
mates can be made as shown in the next section. 

4. Discussion and conclusions 
In Fig. 3, the predicted (Equations 14 and 26) 
and measured complex moduli for E-glass/epoxy 
are plotted against the fibre aspect ratio. Compo- 
site moduli are normalized to the matrix moduli 
for comparison. The differences in the results for 
the two models are due to the fact that the energy 
model is based on the Cox fibre stress distribution, 
while the force-balance model uses the average of 
this stress distribution�9 Fig. 3 shows that both 
analytical models predict an optimum fibre aspect 
ratio, l/d, for maximum damping. The optimum 
lid for damping is less than the minimum aspect 
ratio required for maximum stiffness, however. 
The curves in Fig. 3 were generated by assuming 

1 0  

1 

0 . 1  

E~ f o r  v f = 0 . 7  
a-ln 

, , , . . . . .  I , , , ,  . . . .  1 . . . . . . . .  I 

10 10 2 10 3 

Energy Model,  qf=O 
. . . . . .  F o r c e - B a l a n c e  Model,  rlf=O 

i~ Measured E~/E '~  

][ Measured E c / E "  m 

�9 z ~ ] [  

f o r  v f =  0 . 5  
Em 

,---7-- f o r  vf = 0 . 7  
, ~ - m , , , , , , i  , , , , , , , ,  

10 4 10 5 

F i b r e  A s p e c t  R a t  o, l/d 

Figure 3 Measured and predicted complex moduli for E-glass/epoxy. 
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F o r c e - B a l a n c e  M o d e l  w i th  f i b r e  d a m p i n g  ( q f = O . O 0 1 4 )  
. . . . . .  F o r c e - B a l a n c e  M o d e l  w i t h o u t  f i b r e  d a m p i n g  

~" Measured  ( a v e r a g e  -+-3 s tandard  d e v i a t i o n s )  

v f=  0 . 7  

. . . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . . .  

1 0 1 0 2 1 0 a 1 0 4 1 0 5 

F i b r e  A s p e c t  R a t i o ,  Z/d 

Figure 4 Assumed fibre loss factor gives better agreement with experimental damping data. 

that all energy dissipation occurs in the matrix. 
Better agreement with measured loss moduli is 
obtained by assuming a reasonable fibre loss 
factor, however, as shown in Fig. 4 (Equations 
22 and 26). The general behaviour of the loss 
modulus with regard to aspect ratio curves with 
increased fibre damping is shown clearly in Fig. 5. 
Thus, when r/g < r/Gin/3 (which appears to be the 
case for most common reinforcing fibres), maxi- 
mum damping in the composite is predicted for 

very low aspect ratios. When ~f )~Gm/3 ,  how- 
ever, continuous fibre reinforcement gives the 
best composite damping characteristics. The trends 
observed in Fig. 5 also show the potential advan- 
tages of high damping in such fibres as Kevlar 
[21]. The assumption of either hexagonal or 
square-packing geometry has little effect on the 
magnitude of damping or the optimum aspect 
ratio, as shown in Fig. 6. 

During the initial stages of the experiments, it 
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Figure 5 Effect of fible loss factor on loss modulus of E-glass/epoxy. 
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was believed that the actual fibre aspect ratio 
could be based on the fibre bundle, which contains 
approximately 1000 fibres. This would have meant 
that the aspect ratios for the specimens tested 
would have been much smaller and closer to the 
optimum values, which was desirable. As the 
experiments progressed, however, it became 
apparent that the actual fibre aspect ratio should 
be based on a single fibre, as plotted in Figs. 3 
and 4. Thus, the measured stiffness and damping 
values turned out to be in a region where the 
aspect ratio is not important (i.e. continuous 
fibres). The scatter in the data is thought to be 
due primarily to small differences in fibre volume 
fractions for the different specimens. The lowest 
specimen aspect ratio shown in Figs 3 and 4 
corresponds to 6.35 mm (0.25 in.) long strips of  
prepreg tape, and a fibre diameter of 0.010 mm 
(0.0004 in.). This is believed to be close to the 
lower limit of aspect ratios which we can produce 
by manually cutting the pre-preg tape. As a result 
of these experiments and additional analytical 
results to be discussed in the remainder of this 
paper, we have now shifted our attention to higher 
modulus fibres. 

The analytical models predict that the peak 
damping values and the optimum aspect ratios 
are both increased significantly when higher 
modulus fibres are used, as shown in Fig. 7. These 

results seem to indicate that near-optimum 
damping may be achievable in a whisker or micro- 
fibre composite [22], since the actual aspect ratios 
for these materials are near the predicted optimum 
values. Some sacrifice in stiffness is necessary in 
order to achieve maximum damping, as shown in 
Fig. 8. In practical short-fibre composites, the fibres 
are often randomly oriented and there is reason to 
believe that the shear stress/damping effect is 
magnified still further by this off-axis fibre orien- 
tation [6, 23]. As previously shown in Fig. 5, the 
potential for still greater improvement exists with 
polymeric fibres (e.g. Kevlar), which appear to 
have much higher damping than glass or graphite 
[21]. Finally, hybrid combinations of continuous 
fibres for strength and stiffness and short fibres for 
damping (or mixed fibre types) would appear to 
offer unlimited design flexibility. The authors are 
presently planning a systematic analytical and 
experimental investigation of all of these potential 
improvements. 

The nearly isotropic behaviour and enhanced 
damping of random short fibre composites are 
distinct advantages when compared with the 
highly anisotropic behaviour and relatively low 
damping in continuous fibre composites. Major 
improvements in short fibre and hybrid composite 
materials fabrication techniques and resulting 
material cost reductions are now taking place 

3507 



1~176 I 

10 

1 

0.1 

E n e r g y  M o d e l ,  r l f=0  and v f=0 .5  

1. G l a s s - E p o x y ,  f f l s  19 

2. G r a p h i t e - E p o x y ,  EflEm=104 
" - , = 8 2  

. . . . . . . .  I . . . . . .  ill . . . . . . . .  I . . . . . . . .  I . . . . . . .  

10 102 103 104 105 

F i b r e  A s p e c t  R a t i o ,  l /d 

Figure 7 Effect of fibre stiffness 
on loss modulus of discontin- 
uous aligned composites. 

primarily because of high-volume use of these 
materials in the automobile industry [24]. In 
addition, the almost certain future availability of 
higher modulus, higher strength, short fibres and 
whiskers may mean that short-fibre composites 
can be used in many applications which presently 
require continuous fibre reinforcement [22]. 
Thus, it would appear that these current and 
anticipated developments make such a damping 
research programme even more relevant to the 
continued advancement of structural materials 
and structural dynamics technology. 
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Appendix 
The complex modulus for the composite according 
to the force-balance model was found to be 

E'c + iE" = (E} + iE'~')v, (1 tanh ~*l/2t 
n 

 *t/2 ] 
-[- (f~a -t-/E~n)Vm, (A1)  

where 
i~, = [ G m  2 )]1/2 

[ E~ r~ in (R/ro ' (A2) 

is found by applying the correspondence principle 
to Equation 2. The ratio R/ro in equations such as 
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2, 11, 12, 14 and A2 may be expressed in terms 
of the fibre volume fraction, vf, for a specified 
packing array. For example, 

- 2X/3vf for a hexagonal array, 

and 

( R )  2 = 4vfTr for asquare array. 

In all the analytical results presented in Figs 3 to 
8, a hexagonal array has been assumed. Substitut- 

ing these expressions in Equation 2, we find that 

where 

and 

c 2 = t 2X/3/n 

4hr 

Therefore 

7 = 7 , 

K, [ln0/cv~/b j 
d = 2ro, 

for a hexagonal array 

for a square array. 

/3"I K1 I [G'(1 + i'QGm) ] 1/2 
-~- = 7 [ U~(1 +ir~f) ] 

Since the loss factors are very small, higher 
order terms like r~ and ~Gmr/r can be neglected 
and Equation A6 simplified to 

/3"I 131 
- [1 + ~ i 0 ? G m  - - n f ) ]  �9 ( A 7 )  

2 2 

Similarly, using 
and neglecting 
factors, we get 

tanh ~*~/ = tanh/3/-t- - -  - -  
2 2 

a Taylor's series approximation 

higher order terms in the loss 

i /3l .@/Gm -- nf) 

2 2 cosh2/3//2 " 

Equation A8 was used to obtain Equations 21 and 

22. 
Finally, the factor K in Equation 31 can be 

found from Equation A5 as 

{E~ t 1/2 [ ln  ( l / e v a ' h i " 2  

K = {~mm] 2 4 2  
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